

Preparation of Enantioenriched γ -Substituted Lactones via Asymmetric Transfer Hydrogenation of β -Azidocyclopropane Carboxylates Using the Ru-TsDPEN Complex

Yan Su,^{†,‡} Yong-Qiang Tu,^{*,†} and Peiming Gu^{*,‡}

[†]State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, China [‡]Key Laboratory of Energy Sources & Engineering, State Key Laboratory Cultivation Base of Natural Gas Conversion and Department of Chemistry, Ningxia University, Yinchuan 750021, China

(5) Supporting Information

ABSTRACT: The asymmetric transfer hydrogenation of racemic β azidocyclopropane carboxylates has been explored. Ru-TsDPEN **B** is found to be a good catalyst for the formation of enantioenriched γ -lactones through a four-step sequence of azide reduction/cyclopropane ring cleavage/ketone transfer hydrogenation/lactonization, and the enantiomeric excess of the lactones was up to 94%.

The γ -lactone motif is found to be a very common unit in a variety of natural products,¹ and it is also a very useful building block in synthetic chemistry.² The preparation of these heterocycles has attracted broad interest from organic chemists,³ and one method has incorporated the use of cyclopropanecarboxylates in ring reorganization.⁴ However, the synthesis of such enantioenriched γ -lactones from cyclopropanes has been quite rare (Scheme 1). Kerr and co-workers have converted a range of cyclopropane hemimalonates into racemic γ -substituted lactones, and a slight erosion of

Scheme 1. Enantioenriched γ -Lactones from Cyclopropanes

Chiral γ -lactone from enantio-enriched cyclopropane ester Michael A. Kerr's work:

James L. Gleason's work:

Chiral γ -lactone from racemic cyclopropane ester this work:

enantiomeric excess was observed with one chiral substrate.^{4a} Gleason and co-workers have reported the catalytic asymmetric homoaldol reaction of functionalized cyclopropane and aldehydes for the construction of enantioenriched γ -lactones; however, the enantioselectivity was modest (ee up to 72%).^{4h,i} Following our research on the preparation and conversion of β -azidocyclopropane carboxylates,^{5,6} herein we present the conversion of a range of racemic β -azidocyclopropane carboxylates to enantioenriched γ -substituted lactones through an asymmetric transfer hydrogenation process.

In our research toward the preparation of conformationally restricted β -amino cyclopropane carboxylic acids (β -ACCs), we have developed an efficient method to address the $cis-\beta$ azidocyclopropane carboxylates with excellent control of relative and absolute configuration.⁵ However, the Staudinger reduction of the enantioenriched β -azidocyclopropane carboxylates failed to afford the desired β -ACCs, and only the γ -oxo esters were produced in excellent yield.⁶ It would be very easy to understand here that if the racemic cyclopropane carboxylates were used, the γ -oxo esters would also be efficiently produced. The asymmetric reduction of the γ -oxo esters has been reported with some chiral reagents via stoichiometric processes⁷ or catalytic processes⁸ with control of the stereochemistry. Thus, if a suitable chiral reductant was applied, further asymmetric reduction of the γ -oxo esters to enantioenriched γ -hydroxybutyrates might be possible.

According to the previous research and the above-mentioned conditions, the preparation of a chiral γ -lactone from a racemic β -azidocyclopropane carboxylate was designed through the

Received: July 1, 2014 Published: August 1, 2014 following stages: (1) the reduction of the azido group of the racemic cyclopropane carboxylate would afford the unstable donor-acceptor substituted cyclopropane carboxylate I; (2) ring opening of the cyclopropane carboxylate would afford the zwitterionic intermediate II,⁹ and subsequent proton transfer would give imino ester III, which would be hydrolyzed to the γ -oxo ester IV; (3) asymmetric hydrogenation¹⁰ of the γ -oxo ester would result in the chiral ethyl γ -hydroxybutyrate V; (4) lactonization under the acidic conditions would finally deliver the desired enantioenriched lactone **2** (Scheme 2).

Scheme 2. Designed Conversion of β -Azidocyclopropane Carboxylates to γ -Butyrolactones

For the designed process to be successful, the key issue is to find a good asymmetric reduction system, which must be comparable with the following requirements: (1) reduction of the azido group should be efficiently addressed; (2) the reactivity of the chiral reducing agent should be retained during the cyclopropane ring opening, as NH₃ released from the rearrangement could deactivate some metal catalysts; (3) the enantioselectivity of the hydrogenation must be well controlled. The designed reaction features two reduction processes, so at least 2 equiv of a chiral reductant must be used if a stoichiometric asymmetric reduction was employed. Thus, the catalytic asymmetric hydrogenation seemed to be more suitable. We decided to explore the following two types of commercially available Ru catalysts, Ru-BINAP complex A and Ru-TsDPEN catalysts B-D (Figure 1), which had been widely applied in the asymmetric hydrogenation or the related asymmetric transfer hydrogenation.

Figure 1. Ru-complex for asymmetric hydrogenation of the β -azidocyclopropane ester 1a.

The racemic β -azidocyclopropane carboxylates could be easily prepared from the cyclopropanation of azido alkenes with ethyl diazoacetate in the presence of a Rh catalyst.⁵ The investigation of the reaction was carried out with the β -azidocyclopropane carboxylate **1a** (Table 1). The initial study

Table 1. Asymmetric Hydrogenation of Ethyl β -Azidocyclopropane Carboxylate $1a^{a}$

Ph	CO ₂ Et	Ru cat. TFA Ph	e Pa		CO2Et
entry	catalyst	conditions	time (h)	product (yield)	ee ^e
1	Α	30 atm of H ₂ , MeOH, 25 $^{\circ}C$	18	-	-
2	(<i>S,S</i>)- B	30 atm of H ₂ , MeOH, 60 $^{\circ}$ C	40	3 $(trace)^b$	-
3	(R,R)- C	30 atm of H ₂ , MeOH, 60 $^{\circ}$ C	40	3 $(trace)^b$	-
4	(S,S)- B	HCO ₂ H/Et ₃ N (5:2), 60 °C	24	$2 (69),^{c}$ 2 (55) ^d	93, 94
5	(R,R)- C	HCO ₂ H/Et ₃ N (5:2), 60 °C	24	2 $(62)^c$	-65 ^f
6	(R,R)- D	$HCO_{2}H/Et_{3}N$ (5:2),	24	2 $(35)^c$	-88 ^f

^{*a*}Reaction of cyclopropane **1a** (40.0 mg, 0.17 mmol) with a Ru catalyst (0.085 mmol) under the conditions mentioned above. ^{*b*}Only trace γ -oxo ester **3** formed. ^{*c*}Isolated yield after acidic workup. ^{*d*}Transfer hydrogneation of 180.0 mg of cyclopropane **1a**. ^{*c*}Determined by chiral HPLC. ^{*f*}Opposite enantioselectivity of the product was observed.

of the asymmetric hydrogenation with the Ru-BINAP complex A was found to be invalid (Table 1, entry 1). It was thought that the Ru-BINAP complex A might be deactivated by the potential Staudinger reaction of the azido group with the BINAP ligand.⁶ Thus, we switched to exploring the Ru(II) complexes containing TsDPEN ligands B-D. Hydrogenation of the β -azidocyclopropane carboxylate 1a with Ru-TsDPEN catalysts **B** and **C** at 30 atm of H₂ and 60 °C for 40 h produced only trace γ -oxo ester 3, and none of the desired ethyl γ hydroxybutyrate or γ -lactone 2a could be observed. To our delight, under the asymmetric transfer hydrogenation conditions with the wet HCO₂H/Et₃N azeotrope, a mixture of γ hydroxybutyrates and γ -lactones was observed in the presence of all of the three Ru-TsDPEN catalysts. Treatment of the mixture with TFA afforded the lactone 2a as the ultimate product. The best enantioselecitivity of the transformation was achieved with catalyst **B** containing the (S,S)-TsDPEN ligand. The absolute configuration of 2a was assigned by comparison of the rotation data ($[\alpha]_D$ -22.3) with that of the previous reports.11

The lactone **2a** was obtained with excellent enantioselectivity from the transfer hydrogenation of the β -azidocyclopropane carboxylate **1a** with Ru-TsDPEN catalyst (*S*,*S*)-**B** followed by lactonization, but the yield was slightly reduced when the amount of **1a** was improved from 40.0 mg to 180.0 mg (Table 1, entry 4). For comparison, the transfer hydrogenation of γ oxo ester **3** (32 mg) under similar conditions followed by TFA had been explored, and the resulting lactone **2a** was obtained in better yield (93%) but with slightly poor enantioselectivity (86% ee). The difference between the yields (69% vs 93%) of the two experiments could be easily understood, as the γ -oxo ester **3** was supposed to be the intermediate of the designed process. However, it was very interesting that the enantiose-

Organic Letters

lectivity of hydrogenation of **1a** was better than that of the γ -oxo ester **3**. The γ -oxo ester seemed to be simpler than the β -azidocyclopropane carboxylate. But it should be noted here that the general method toward γ -oxo ester was the Stetter reaction of an aldehyde with an α , β -unsaturated compound, which was catalyzed by a highly toxic metal cyanide or a complex thiazolium salt.

With the above results, we next explored the scope of the substrates with Ru-TsDPEN catalyst (S,S)-B (Scheme 3). The

^{*a*}Reaction conditions: Asymmetric transfer hydrogenation of the β azidocyclopropane carboxylate in the wet HCO₂H/Et₃N azeotrope with Ru-TsDPEN catalyst (*S*,*S*)-**B** (5 mol %) at 60 °C for 24 h. Then lactonization with TFA in CH₂Cl₂ after the removal of the HCO₂H/ Et₃N azeotrope.

halogen-substituted phenyl substrates proceeded in the sequential reaction smoothly, producing lactones 2b-2e in 43%-66% yield with good enantioselectivities (84-90% ee). Transfer hydrogenation of the 4-cyanophenyl β -azidocyclopropane carboxylate 1f followed by lactonlization gave lactone 2f in a better yield but with slightly decreased enantioselectivity. Attaching a methyl group at the para- and meta-position on the phenyl ring of the β -azidocyclopropane carboxylates resulted in slightly better enantioselectivity (2g, 93% ee; 2h, 94% ee). However, introduction of a methoxyl group strongly decreased the conversion as well as the enantioselectivity. The naphthalene analogue was also examined, and the resulting lactone 2k was obtained in 40% yield with good enantioselectivity (81% ee).

It should be noted here that the transformation proceeded through a multistep conversion, which is combined with the reduction of an azido group, cyclopropane ring rearrangement, asymmetric transfer hydrogenation of γ -oxo ester, and lactonization of ethyl γ -hydroxybutyrate. So even for the lactone **2k** with only a 40% yield, the average yield of the four steps reached up to 80%.

In conclusion, we have demonstrated that the Ru-TsDPEN complex **B** is a good catalyst for the asymmetric transfer hydrogenation of racemic β -azidocyclopropane carboxylate to enantioenriched γ -lactones. A four-step sequence of azide reduction/cyclopropane ring rearrangement/asymmetric transfer hydrogenation of γ -oxo ester/ γ -lactonization produced 11 γ -

lactones, and most lactones were obtained in good to excellent enantioselectivities.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and spectroscopic data and copies of NMR spectra for all the β -azidocyclopropane carboxylates and γ -lactones. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: tuyq@lzu.edu.cn.

*E-mail: gupm@nxu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (No. 21262024), the Program for New Century Excellent Talents in University (NCET-13-0874), and the Scientific Research Foundation for Returned Scholars (Ministry of Education of China).

REFERENCES

(1) (a) Look, S. A.; Burch, M. T.; Fenical, W.; Zhen, Q.-T.; Clardy, J. *J. Org. Chem.* **1985**, *50*, 5741. (b) Bloch, R.; Gilbert, L. *J. Org. Chem.* **1987**, *52*, 4603. (c) Mori, K. *Tetrahedron* **1989**, *45*, 3233. (d) Amagata, T.; Usami, Y.; Minoura, K.; Ito, T.; Numata, A. J. Antibiot. **1998**, *51*, 33.

(2) For selected examples, see: (a) Ghosh, A. K.; Swanson, L. J. Org. Chem. 2003, 68, 9823. (b) Stangeland, E. L.; Sammakia, T. J. Org. Chem. 2004, 69, 2381. (c) Lipshutz, B. H.; Lower, A.; Kucejko, R. J.; Noson, K. Org. Lett. 2006, 8, 2969.

(3) For a review, see: Ogliaruso, M. A. ; Wolfe, J. F. Synthesis of lactones and lactams; Patai, S., Rappoport, Z., Eds; Wiley: 1993.

(4) For selected examples, see: (a) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Lett. 2013, 15, 4838–4841. (b) Newhouse, T. R.; Kaib, P. S. J.; Gross, A. W.; Corey, E. J. Org. Lett. 2013, 15, 1591. (c) Stokes, S.; Mustain, R.; Pickle, L.; Mead, K. T. Tetrahedron Lett. 2012, 53, 3890. (d) Novikov, R. A.; Korolev, V. A.; Timofeev, V. P.; Tomilov, Y. V. Tetrahedron Lett. 2011, 52, 4996. (e) Yang, G.; Shen, Y.; Li, K.; Sun, Y.; Hau, Y. J. Org. Chem. 2011, 76, 229. (f) Stokes, S.; Spears, B.; Laseter, C.; Barker, B.; Mead, K. T. Tetrahedron Lett. 2010, 51, 4003. (g) Chagarovskiy, A. O.; Ivanova, O. A.; Rakhmankulov, E. R.; Budynina, E. M.; Trushkov, I. V.; Melnikov, M. Y. Adv. Synth. Catal. 2010, 352, 3179. (h) Burke, E. D.; Lim, N. K.; Gleason, J. L. Synlett 2003, 390–392. (i) Martins, E. O.; Gleason, J. L. Org. Lett. 1999, 1, 1643–1645. (j) Grimm, E. L.; Reissig, H.-U. J. Org. Chem. 1985, 50, 242–244.

(5) Preparation of chiral β -azidocyclopropane carboxylates in our group: Gu, P.; Su, Y.; Wu, X.-P.; Sun, J.; Liu, W.-Y.; Xue, P.; Li, R. *Org. Lett.* **2012**, *14*, 2246–2249.

(6) Ring-opening of β -azidocyclopropane carboxylates in our group: Gu, P.; Wu, X.-P.; Su, Y.; Xue, P.; Li, X.-Q.; Gong, B.-L.; Li, R. *Tetrahedron Lett.* **2013**, 54, 4957–4959.

(7) Selected examples using of stoichiometric chiral reagents for the asymmetric reduction of the γ -oxo esters: (a) Ramachandran, P. V.; Brown, H. C.; Pitre, S. Org. Lett. **2001**, *3*, 17–18. (b) Ramachandran, P. V.; Pitre, S.; Brown, H. C. J. Org. Chem. **2002**, *67*, 5315–5319.

(8) Selected examples using catalytic chiral reagents for the asymmetric reduction of the γ -oxo esters: (a) Lipshutz, B. H.; Lower, A.; Kucejko, R. J.; Noson, K. Org. Lett. **2006**, 8, 2969–2972. (b) Broussy, S.; Cheloha, R. W.; Berkowitz, D. B. Org. Lett. **2009**, 11, 305–308. (c) Schiffers, R.; Kagan, H. B. Synlett **1997**, 1175–1178.

Organic Letters

(d) Díaz-Rodríguez, A.; Borzęcka, W.; Lavandera, I.; Gotor, V. ACS Catal. 2014, 4, 386–393. (e) Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C.-P.; Singh, V. K. J. Am. Chem. Soc. 1987, 109, 7925–7926.

(9) For selected reviews on the ring opening of donor-acceptor substituted cyclopropane, see: (a) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151-1196. (b) Gnad, F.; Reiser, O. Chem. Rev. 2003, 103, 1603-1624. (c) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321-347. (d) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051-3060. (e) De Simone, F.; Saget, T.; Benfatti, F.; Almeida, S.; Waser, J. Chem.—Eur. J. 2011, 17, 14527-14538. (f) Reisman, S. E.; Nani, R. R.; Levin, S. Synlett 2011, 2437-2442. (g) Tang, P.; Qin, Y. Synthesis 2012, 2969-2984. (h) Wang, Z. W. Synlett 2012, 2311-2327. (i) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804-818.

(10) A special issue on asymmetric hydrogenation and asymmetric transfer hydrogenation in Accounts of Chemical Research: (a) Acc. Chem. Res. 2007, 40, 1237–1419. For other selected reviews on this topics, see: (b) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97–102. (c) Gridnev, I.; Imamoto, T. Acc. Chem. Res. 2004, 37, 633–644. (d) Cui, X.; Burgess, K. Chem. Rev. 2005, 105, 3272–3296.

644. (d) Cui, X.; Burgess, K. Chem. Rev. **2005**, 105, 3272–3296. (11) For the enantiomer of **2a** (93% ee), $[\alpha]^{25}_{D}$ +17.1 (c 1.0, CH₂Cl₂), see: Murphy, S. K.; Dong, V. M. J. Am. Chem. Soc. **2013**, 135, 5553–5556.